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Distributed VIs

We study the regularized variational inequal-
ity (VI) problem formulated as finding z∗ ∈ Z
such that

⟨F (z∗), z − z∗⟩ + g(z) − g(z∗) ≥ 0,

∀z ∈ Z, where Z ⊆ Rd is a closed convex
set, and g : Z → R is a proper convex lower
semicontinuous function.
Modern applications often require working
with an operator of the form

F (z) = 1
m

m∑
i=1

Fi(z),

where {Fi}m
i=1 are distributed across m nodes.

One of the approaches to overcome the com-
munication bottleneck is to exploit the simi-
larity of local data.

Similarity

The essence of similarity approaches is to
move most of the computation to the server,
offloading the other nodes. If local datasets
are i.i.d. samples from the same distribution,
local operators Fi are statistically similar to
their average F . In the case of convex op-
timization problems, this condition has the
form

∥∇2f (z) − ∇2fi(z)∥ ≤ δ.

In the case of VIs, the Hessian similarity can
be generalized and written as
∥(Fi − F )(z1) − (Fi − F )(z2)∥ ≤ δ∥z1 − z2∥.

This is the most natural measure of similarity
because generally δ ∼ 1/

√
N.

Definitions

• The operator F (·) is called µ−strongly
monotone with respect to distance generat-
ing function w(·), if
⟨F (u)−F (v), u−v⟩ ≥ µ (V (u, v) + V (v, u)) ,

for all u, v ∈ Z, where V (·, ·) is the Bregman
divergence corresponding to w(·).
• The operator F (·) is called L-Lipschitz, if

∥F (u) − F (v)∥ ≤ L∥u − v∥,

for all u, v ∈ Z.
• We call the stochastic operator F (·, ξ) to
be unbiased with bounded variance, if

Eξ[F (z, ξ)] = F (z),
Eξ[∥F (z∗, ξ) − F (z∗)∥2] ≤ σ2

z,

for every z ∈ Z.

Main Algorithm

Algorithm PAUS

1: for k = 0, 1, 2, . . . , K − 1 do
2: Sample random variable ξk on server
3: Collect F (zk, ξk) = 1

m

∑m
i=1 Fi(zk, ξk

i )
on server

4: Find uk as a solution to
γ⟨F1(uk) + F (zk, ξk) − F1(zk), z − uk⟩

+⟨∇w(uk) − ∇w(zk), z − uk⟩
+γ(g(z) − g(uk)) ≥ 0

for all z ∈ Z by SCMP procedure on
server

5: Collect F (uk, ξk) = 1
m

∑m
i=1 Fi(uk, ξk

i )
on server

6: Find zk+1 as a solution to
⟨γ(F (uk, ξk) − F1(uk) − F (zk, ξk)

+F1(zk)) + (1 + α)(∇w(zk+1)
−∇w(uk)), z − zk+1⟩ ≥ 0

for all z ∈ Z on server
7: end for
8: return ũK = 1

K

∑K−1
k=0 uk for monotone

VIs and zK for strongly monotone ones

Convergence

Theorem

Consider the monotone operator F (·). Let
the stochastic oracle F (·, ξ) be monotone,
unbiased and have uniformly bounded
variance. Suppose F (·, ξ) − F1(·) is
δ-smooth. Let ũK be the output of
PAUS, run with appropriate parameters
and starting points z0, u0 ∈ Z in

O
(

Dδ

ε
+ Dσ2

ε2

)
communication rounds. Then it achieves
Gap(ũK) ≤ ε.

Theorem
Consider the strongly monotone operator
F (·). Let the stochastic oracle F (·, ξ)
be strongly monotone, unbiased and have
variance bounded at the solution. Suppose
F (·, ξ) − F1(·) is δ-smooth. Let zK be the
output of PAUS, run with an appropriate
parameters and a starting point z0 ∈ Z, in

O
(

8δ

µ
log 1

ε
+ 8σ2

∗
3µε

)
communication rounds. Then it achieves
V (z∗, zK) ≤ ε.

Approach to the Subproblem

For simplicity we introduce the function
H(v, ξ) = γ

(
F1(v, ξ) + F (zk, ξk) − F1(zk)

)
.

Algorithm SCMP
1: Choose starting point v0 ∈ Z
2: for t = 0, 1, 2, . . . , T − 1 do
3: Sample random variable ξt on server
4: Find vt+1

2 as a solution to
⟨ηH(vt, ξt) + η(∇w(vt+1

2) − ∇w(zk))
+∇w(vt+1

2) − ∇w(vt), v − vt+1
2⟩

+γ(g(v) − g(vt+1
2))

≥ 0
5: Find vt+1 as a solution to

⟨ηH(vt+1
2, ξt) + η(∇w(vt+1) − ∇w(zk))

+∇w(vt+1) − ∇w(vt), v − vt+1⟩
+γ(g(v) − g(vt+1)) ≥ 0.

6: end for
7: return vT

Theorem

Consider the monotone operator F1(·). Let
the stochastic oracle F1(·, ξ) be Lipschitz,
monotone, unbiased and have variance
bounded at the solution of the subproblem.
Suppose F (·, ξ) − F1(·) is δ-smooth. Con-
sider stepsize γ = 1/2δ and starting point
v0. Then SCMP with appropriate choice of
η needs

O
(

LF1

δ
log V (v∗, v0)

ε
+

σ2
1,∗
ε

)
iterations

to achieve V (v∗, vT ) ≤ ε.

Experiments

We carry out numerical experiments for a
stochastic matrix game

min
x∈∆

max
y∈∆

[
x⊤E[Aξ]y

]
,

where x, y are the mixed strategies of two
players, ∆ is the probability simplex, and Aξ

is a stochastic payoff matrix.

Figure: Comparison of state-of-the-art methods


