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Algorithm 1 FedAvg

The K clients are indexed by k; B is the local minibatch size, E is the
number of local epochs, « is the learning rate, and C is the fraction
of clients.

1: Server executes:

2: Initialize Wy

3: for each round t =1,2,... do

4 m < max(C - K, 1)

S; < (random set of m clients)

for each client k£ € S; in parallel do
W, « ClientUpdate(k, W)

end for

my < ZkeS, Nk

100 Wi & Ypes, We,

11: end for

ClientUpdate(k, W): // Run on client k
1: for each local epoch i from 1 to E do
2 for batch b € B do
3: W« W —~4VL(,W)
4: end for
5. end for

6: return W to server
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Algorithm 2 FedAvg

The K clients are indexed by k; B is the local minibatch size, E is the
number of local epochs, v is the learning rate, and C is the fraction
of clients.

1: Server executes:
2: Initialize Wy
3: for each round t =1,2,... do

4 m + max(C - K,1)

5 St < (random set of m clients)

6: for each client k € S; in parallel do
7 W, | + ClientUpdate(k, W;)

8 end for

9: my < Zkes, ng
T R

ClientUpdate(k, W): // Run on client k
1: for each local epoch i from 1 to E do
2 for batch b € B do
3: W« W —yVL(b, W)
4: end for
5. end for

6: return W to server
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(c) Training examples and labels stored only at the client.
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(b) Training examples and labels are split between the client and the
server.
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@ Training under the Split Learning protocol
@ Aiming to protect the data against Feature Reconstruction attacks

@ While the attacker can be either Malicious or Honest-but-curious
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Given a client model f, its clone f (i.e., the randomly initialized model
with the same architecture), the adversary server attempts to solve the
two-step optimization problem:

X* = argmin Luisk (F(X, W), f(X, W)) FATV(X),
X

W* = arg min LysE (F()N(, W), (X, W)) i
w
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UnSplit )
Given a client model f, its clone f (i.e., the randomly initialized model

with the same architecture), the adversary server attempts to solve the
two-step optimization problem:

X* = argmin Luisk (F(X, W), f(X, W)) FATV(X),
X

W* = arg min LysE (f()N(, W), (X, W)) i
w

X, W are the client model’s private inputs and parameters; TV is the
total variation distance for image pixels; X*, W* are the desired variables
for the attacker's reconstructed output and parameters
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Baselines

Hijacking attack (FSHA)

Slightly different assumptions, the attacker has an access to some public
part of the dataset.

We have client-side model f : X — Z.

Server initializes three additional models: encoder ¥ : X — ZcC Z,
decoder Yp : Z — X, and discriminator D.

Vg, Yp = arg zpmidf) Lvsk (Yo (Ve (Xpub))s Xoub) »
E,¥YD
D = argmin [log(1 — D(¢m(Xpup))) + log(D(f(X)))],
L* = arg mfin [log (1 — D(f(X)))].
And, finally, server recovers features with:

X* =4 (L5(X)).
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Both of these attacks are validated exclusively on image datasets,
utilizing CNN architectures

Hard to analyze their performance in theory

Does architectural design play a crucial role in the effectiveness of the
latter attacks?

Is it that simple to attack features, or does the data prior knowledge
give a lot?

Can we develop a theoretical intuition that MLP-based models might
be more privacy-preserving againts Feature Reconstruction attacks?
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Let us consider a client f as one-layer linear model f = XW with
W € Rdxdn

Introduce a pairs {X, W} — {X, W} = {XU, UT W}, where U is an
arbitrary (semi)orthogonal matrix (transformations)

Assume training with (S)GD for k iterations

1. Base case, k = 1: H; = XiW; = X{UUT Wy = Wy = Ay

2. Induction step, k+N1 > 1: Let Hy = Fi by induction hypothesis.
Then OL/OH, = 0L/OH, = G € R™*9n Recall, that

oW OH  OW,  “k gH, Tk Tk
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Then the step of GD for the pairs {X, W1} and {X, W} returns
Wics1 = Wi — X Gi
and y y y
Wis1 = Wi — X/ G = UT W, — U X! Gy
respectively.
Thus, at k + 1 step
Hicr1 = Xia1 Wierr = X Wh — 7 X1 X, G =

= X1 UU T Wi — v X UUT X G =

= X1 Wi — v X1 X, Gie =

= X1 Wierr = A,

i.e., the activations sent to the server are identical for {X', W4}, {X, Wy}
pairs.
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Lemma 1

For a one-layer linear model trained using GD or SGD, there exist
continually many pairs of client data and weights initialization that
produce the same activations at each step.

Remark 1

Under the conditions of Lemma 1, if the server has no prior information
about the distribution of X, the label party cannot reconstruct initial data
X (only up to an arbitrary orthogonal transformation).

What about the Malicious server???
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Corollary 1

Under the conditions of Lemmal, assume that server knows the first layer
Wi of f, and let this layer be an invertible matrix. Then, the label party
cannot reconstruct the initial data X (only up to an arbitrary orthogonal
transformation).

Client transmits Hiy 1 = XWji1
Wk+1 — Wk _ ,YXT Gﬁ'ako —

= (W1 —9XT Gl — X TGl =

i G_fake] )

i=1

— o= Wy — X T
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k

Z G.fake
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Hi1 = XWip = XWp — 4 XX T
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)

k
fake
> G

i=1

Hi1 = XWip = XWp — 4 XX T

k
fake
S Gkl

i=1

= XW; —yXXT

k
fake
>_G

i=1

/:Ik+1 = )?Wl — ’)/)?)?T

The server can only build its attack based on the knowledge of X = XU
and XX 7.

This means that it cannot distinguish between two different pairs {X, U}
if they generate the same values X and XXT.
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the malicious server cannot reconstruct initial data X (only up to an
arbitrary orthogonal transformation).
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Lemma 2 |

Under the conditions of Lemma 1, assume training with the malicious
server sending arbitrary vectors instead of real gradients G = 9f /OH. In
addition, the server knows the initialization of the weight matrix Wj.
Then, if the client applies a non-trainable orthogonal matrix before Wj,
the malicious server cannot reconstruct initial data X (only up to an
arbitrary orthogonal transformation).

Remark 2 |
With the same reasons as for Lemma 1, if even the malicious server from
Lemma 2 has no prior information about the distribution of X, it is
impossible for the label party to reconstruct the initial data X.
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Up until now, we considered the client-side model with one linear layer W
and proved that orthogonal transformation of data X and weights W lead
to the same training protocol

The intuition behind Lemmas 1 and 2 suggests that in the client model,
one should look for layers whose inputs cannot be given the prior
distribution.

What about Cut Layer?
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Cut Layer Lemma |

There exist continually many distributions of the activations before the
linear Cut Layer that produce the same Split Learning protocol.

H=2ZW,Z —-7=2Uand Wy — Wy = UT W,.

Let us define the client's " previous” parameters (before W) as 6 and
function of this parameters as fy : fy(0, X) = Z.

Then

FIX,0,W)=H =60, X)W =2ZW, L=L(H)=L(ZW).



Let us consider the gradient of loss £ w.r.t. W and 6:
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Let us consider the gradient of loss £ w.r.t. W and 6:

OL _OLOH _ 7oL

oW ~ 9HOW OH’
L OLOHOZ [8Z17 0L, + LOL 9T
ae—af/azae—[ae} ar” =2 ar"

where J = de — Jacobian of fy.
Thus, after the first two iterations we conclude:

L oL
Hi=ZiWy, 0 =01 —~Ji—W,", Wo=W; —~Z/
1 Wi, 62=0; ’YJlaHl 1 ) 1— 18H
and
T 0L

H2 - ZZW2 - @(027X)W2 - f9(627X)W1 - 77(9(927)()21 (9H1



Adding the additional orthogonal matrix U results in:

~ ~ y ~ ~ ~ ~+ 0L
Wl == UTWl, H]_ == Z]_W]_ = (Z]_U)W]_ = /‘I]_7 W2 = Wl —fyZ]jrail_ll



Adding the additional orthogonal matrix U results in:

. -5 . L st OL
Wl == UTWl, H]_ == Z]_W]_ = (Z]_U)W]_ = /‘l]_7 W2 = Wl —fyZ]jrail_ll
oL 0L OH1 02,07y  ,OL v v L OL o+ 1 7

_— = — 7W = i, W
80, OHy, 97, 0Z; 90 T MY JlaHl(U 1) Y
oL oL
=== w ==
J18H1 T



Adding the additional orthogonal matrix U results in:

=U"Wi, Hi=2W =(ZU)Wy=Hy, W= W — leaaﬁ
oL AL OH, 07,07, oL - )
R — — W — W
901 OHy 97, 071 06 ham iU hamfu 1) U
oL oL
= W,
J%m 1= 96,

Then, for the activations obtained with and without U we claim:

Hy = ZyWo = (62, X)UW,
= f(62, X)UWy — ~f (62, X)UZ 1T8£
OH;

= H,.



Hypothesis

Hypothesis 1 |
Could it be that the attacks are successful due to the lack of dense layers
in the client architecture? Will usage of MLP-based architectures for f,
instead of CNNs, be more privacy preserving against Model Inversion
attack and FSHA?



Figure: Results of UnSplit attack on CIFAR-10. (Top): Original images.
(Middle): CNN-based client model. (Bottom): MLP-Mixer client model.
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Figure: Results of UnSplit attack on Figure: Results of UnSplit attack on
MNIST. (Top): Original images. F-MNIST. (Top): Original images.

(Middle): CNN-based client model. (Middle): CNN-based client model.
(Bottom): MLP-based client model. (Bottom): MLP-based client model.
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Figure: Results of FSHA attack on Figure: Results of FSHA attack on
MNIST. (Top): Original images. F-MNIST. (Top): Original images.
(Middle): CNN-based client model. (Middle): CNN-based client model.

(Bottom): MLP-based client model.  (Bottom): MLP-based client model.
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Experiments
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Split Learning with Adam

Previous theory works only for (S)GD-like methods. In
practice, all experiments are correct with Adam also

What about Adam in theory?
In Adam, the bias-corrected first and second moment estimates, i.e. my
and Dy are:

= AT AVE(W),
Dﬁ

1 52 Zl 15§ ‘d|ag(V£( ) © VL(W)),

with the following update rule (without bias-correctness):

M1 = P+ (1 — B1) VL(Wk),

D2, = D2 + (1 - B2) diag(VL(WA) © VL(W)).
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Remark Adam |

Let {X, W} = {XU, UT W} pairs are an orthogonal(semi-orthogonal)
transformations of data and weights. Then, these pairs, in general, do not
produce the same activations at each step of the Split Learning process

with Adam.
Indeed,

a . oL oL
D2 — 3,D% , = (1 — B,)dia <~@ )
k B2 k—1 ( 52) 1ag VA P



Split Learning with Adam

. _ oL OH. 9L OH,
— B,D% ; =(1— f3,)d s .
Fabicy = (1= fo) diag (8Hk8Wk aHk8Wk>

= (1 - f2)diag (XT oL @)N(Ta{:>

O OHy
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k

oL oL
1 , TyT TyT
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Split Learning with Adam

the similar holds for fmy

. . or oL ofh L oc
B = (1—B) — (1 —(1-B)K
my — Bi_1 = ( ﬁl)aWk (1 Bl)aHkﬁwk (1-751) o
(/:kaHk) _ T oL _ TvT oL
=" (1 51)X 8H =(1-p/)U'X —aHk.
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Split Learning with Adam

Then, it is clear how to compare the activations at k + 1-th step

Fhir = XWhey1 = XWg — v XUD
Hir1 = XWic1 = XWi, — v XDt i

Therefore, a descrepancy between I:Ik+1 and My vanishes when

UD b = Dt rig.



Split Learning with Adam

As usual, Adam may not converge on general

non-convex functions after the roation of data and
weights



Split Learning with Adam

As usual, Adam may not converge on general

non-convex functions after the roation of data and
weights



Split Learning with Adam

Example Indeed, let the initial weight and data vectors
equal:

-
w = (1.915 +V2-06, 0) ,
y=1(1,0)".

We rotate these arguments by an angle of 7 with:

1 |1 -1
=7k 1)
In addition we pick the learning rate v = 0.6. After that,

the optimization algorithm stack in the local minima if
starting from (Rw, Ry) point.



Split Learning with Adam

fix) = x2 + 6sin?(x), Adam

/\[\"W
8
6
= —— before rotation
=, after rotation

step
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Split Learning with Adam

But, Adam will converge to the same optimal value on
PL-functions

Remark
The model’s optimal value £* after Split Learning is the same for any

orEhogonaI dzgta transformation.NIncNieed,
VX = XU IW* = UTW*: L(X, W*) = L* = L(X, W*).

In addition, Split Learning protocol is preserved for PL functions with
orthogonal transformations of data and weights



Split Learning with Adam

Descent Lemma |

Suppose the L-smooth Assumption holds for function £. Then we have for
all k > 0 and #, it is true for Adam that

1 L

.
£(Wess) < LMY + L IVL) = mil? = (5 = o ) [Wheos

— Wi

2 g 2
b, EHVL’(Wk) bt
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Descent Lemma
Suppose the L-smooth Assumption holds for function £. Then we have for

all k > 0 and #, it is true for Adam that

1 L

.
£(Wess) < LMY + L IVL) = mil? = (5 = o ) [Wheos

2" 1
Dk

— Wi

v
B~ S VL)

Without proof here:)



The End

Thanks!



