
Just a Simple Transformation is Enough for Data
Protection in Vertical Federated Learning

Andrei Semenov

MLO Group Meeting, 09.10.2024



Intro: Privacy & FL

. . . for Data Protection in Vertical Federated Learning



Intro: Privacy & FL

• Federated Learning



Intro: Privacy & FL

• Federated Learning



Intro: Privacy & FL

• (Horizontal) Federated Learning



Intro: Privacy & FL

• (Horizontal) Federated Learning



Intro: Privacy & FL

• (Horizontal) Federated Learning



Intro: Privacy & FL

• (Vertical) Federated Learning



Intro: Privacy & FL

• (Vertical) Federated Learning



Intro: Privacy & FL

• Vertical Federated Learning → Split Learning



Intro: Privacy & FL

• Vertical Federated Learning → Split Learning



Intro: Privacy & FL

• Vertical Federated Learning → Split Learning



Intro: Privacy & FL

• Data Protection

Attacks

Label Inference
Feature Reconstruction
Model Reconstruction

Defenses

Cryptographic-based methods
Differential Privacy

Obfuscation-based approaches



Intro: Privacy & FL

• Data Protection

Attacks

Label Inference
Feature Reconstruction
Model Reconstruction

Defenses

Cryptographic-based methods
Differential Privacy

Obfuscation-based approaches



Intro: Privacy & FL

• Data Protection

Attacks

Label Inference
Feature Reconstruction
Model Reconstruction

Defenses

Cryptographic-based methods
Differential Privacy

Obfuscation-based approaches



Intro: Privacy & FL

• Data Protection

Attacks

Label Inference
Feature Reconstruction
Model Reconstruction

Defenses

Cryptographic-based methods
Differential Privacy

Obfuscation-based approaches



Intro: Privacy & FL

• Data Protection

Attacks

Label Inference
Feature Reconstruction
Model Reconstruction

Defenses

Cryptographic-based methods
Differential Privacy

Obfuscation-based approaches

Attacker’s knowledge

White-Box assumption
Black-Box assumption

Attacker’s acting
Honest-but-curious

Malicious



Intro: Privacy & FL

• Data Protection

Attacks

Label Inference
Feature Reconstruction
Model Reconstruction

Defenses

Cryptographic-based methods
Differential Privacy

Obfuscation-based approaches

Attacker’s knowledge
White-Box assumption
Black-Box assumption

Attacker’s acting

Honest-but-curious
Malicious



Intro: Privacy & FL

• Data Protection

Attacks

Label Inference
Feature Reconstruction
Model Reconstruction

Defenses

Cryptographic-based methods
Differential Privacy

Obfuscation-based approaches

Attacker’s knowledge
White-Box assumption
Black-Box assumption

Attacker’s acting
Honest-but-curious

Malicious



Intro: Privacy & FL

• Data Protection

Attacks

Label Inference
Feature Reconstruction
Model Reconstruction

Defenses

Cryptographic-based methods
Differential Privacy

Obfuscation-based approaches

Attacker’s knowledge
White-Box assumption
Black-Box assumption

Attacker’s acting
Honest-but-curious

Malicious



Setup

Training under the Split Learning protocol

Aiming to protect the data against Feature Reconstruction attacks

While the attacker can be either Malicious or Honest-but-curious



Setup

Training under the Split Learning protocol

Aiming to protect the data against Feature Reconstruction attacks

While the attacker can be either Malicious or Honest-but-curious



Setup

Training under the Split Learning protocol

Aiming to protect the data against Feature Reconstruction attacks

While the attacker can be either Malicious or Honest-but-curious



Setup

Training under the Split Learning protocol

Aiming to protect the data against Feature Reconstruction attacks

While the attacker can be either Malicious or Honest-but-curious



Baselines

UnSplit

Given a client model f , its clone f̃ (i.e., the randomly initialized model
with the same architecture), the adversary server attempts to solve the
two-step optimization problem:

X̃ ∗ = argmin
X̃

LMSE

(
f̃ (X̃ , W̃ ), f (X ,W )

)
+ λTV(X̃ ),

W̃ ∗ = argmin
W̃

LMSE

(
f̃ (X̃ , W̃ ), f (X ,W )

)
.

X , W are the client model’s private inputs and parameters; TV is the
total variation distance for image pixels; X̃ ∗, W̃ ∗ are the desired variables
for the attacker’s reconstructed output and parameters



Baselines

UnSplit
Given a client model f , its clone f̃ (i.e., the randomly initialized model
with the same architecture), the adversary server attempts to solve the
two-step optimization problem:

X̃ ∗ = argmin
X̃

LMSE

(
f̃ (X̃ , W̃ ), f (X ,W )

)
+ λTV(X̃ ),

W̃ ∗ = argmin
W̃

LMSE

(
f̃ (X̃ , W̃ ), f (X ,W )

)
.

X , W are the client model’s private inputs and parameters; TV is the
total variation distance for image pixels; X̃ ∗, W̃ ∗ are the desired variables
for the attacker’s reconstructed output and parameters



Baselines

UnSplit
Given a client model f , its clone f̃ (i.e., the randomly initialized model
with the same architecture), the adversary server attempts to solve the
two-step optimization problem:

X̃ ∗ = argmin
X̃

LMSE

(
f̃ (X̃ , W̃ ), f (X ,W )

)
+ λTV(X̃ ),

W̃ ∗ = argmin
W̃

LMSE

(
f̃ (X̃ , W̃ ), f (X ,W )

)
.

X , W are the client model’s private inputs and parameters; TV is the
total variation distance for image pixels; X̃ ∗, W̃ ∗ are the desired variables
for the attacker’s reconstructed output and parameters



Baselines

Hijacking attack (FSHA)

Slightly different assumptions, the attacker has an access to some public
part of the dataset.
We have client-side model f : X → Z.
Server initializes three additional models: encoder ψE : X → Z̃ ⊂ Z,
decoder ψD : Z̃ → X , and discriminator D.

ψ∗
E, ψ

∗
D = arg min

ψE,ψD

LMSE (ψD(ψE(Xpub)), Xpub) ,

D = argmin
D

[log(1− D(ψE(Xpub))) + log(D(f (X )))] ,

L∗ = argmin
f

[log (1− D(f (X )))] .

And, finally, server recovers features with:

X̃ ∗ = ψ∗
D (L∗(X )) .



Baselines

Hijacking attack (FSHA)
Slightly different assumptions, the attacker has an access to some public
part of the dataset.
We have client-side model f : X → Z.
Server initializes three additional models:

encoder ψE : X → Z̃ ⊂ Z,
decoder ψD : Z̃ → X , and discriminator D.

ψ∗
E, ψ

∗
D = arg min

ψE,ψD

LMSE (ψD(ψE(Xpub)), Xpub) ,

D = argmin
D

[log(1− D(ψE(Xpub))) + log(D(f (X )))] ,

L∗ = argmin
f

[log (1− D(f (X )))] .

And, finally, server recovers features with:

X̃ ∗ = ψ∗
D (L∗(X )) .



Baselines

Hijacking attack (FSHA)
Slightly different assumptions, the attacker has an access to some public
part of the dataset.
We have client-side model f : X → Z.
Server initializes three additional models: encoder ψE : X → Z̃ ⊂ Z,

decoder ψD : Z̃ → X , and discriminator D.

ψ∗
E, ψ

∗
D = arg min

ψE,ψD

LMSE (ψD(ψE(Xpub)), Xpub) ,

D = argmin
D

[log(1− D(ψE(Xpub))) + log(D(f (X )))] ,

L∗ = argmin
f

[log (1− D(f (X )))] .

And, finally, server recovers features with:

X̃ ∗ = ψ∗
D (L∗(X )) .



Baselines

Hijacking attack (FSHA)
Slightly different assumptions, the attacker has an access to some public
part of the dataset.
We have client-side model f : X → Z.
Server initializes three additional models: encoder ψE : X → Z̃ ⊂ Z,
decoder ψD : Z̃ → X ,

and discriminator D.

ψ∗
E, ψ

∗
D = arg min

ψE,ψD

LMSE (ψD(ψE(Xpub)), Xpub) ,

D = argmin
D

[log(1− D(ψE(Xpub))) + log(D(f (X )))] ,

L∗ = argmin
f

[log (1− D(f (X )))] .

And, finally, server recovers features with:

X̃ ∗ = ψ∗
D (L∗(X )) .



Baselines

Hijacking attack (FSHA)
Slightly different assumptions, the attacker has an access to some public
part of the dataset.
We have client-side model f : X → Z.
Server initializes three additional models: encoder ψE : X → Z̃ ⊂ Z,
decoder ψD : Z̃ → X , and discriminator D.

ψ∗
E, ψ

∗
D = arg min

ψE,ψD

LMSE (ψD(ψE(Xpub)), Xpub) ,

D = argmin
D

[log(1− D(ψE(Xpub))) + log(D(f (X )))] ,

L∗ = argmin
f

[log (1− D(f (X )))] .

And, finally, server recovers features with:

X̃ ∗ = ψ∗
D (L∗(X )) .



Baselines

Hijacking attack (FSHA)
Slightly different assumptions, the attacker has an access to some public
part of the dataset.
We have client-side model f : X → Z.
Server initializes three additional models: encoder ψE : X → Z̃ ⊂ Z,
decoder ψD : Z̃ → X , and discriminator D.

ψ∗
E, ψ

∗
D = arg min

ψE,ψD

LMSE (ψD(ψE(Xpub)), Xpub) ,

D = argmin
D

[log(1− D(ψE(Xpub))) + log(D(f (X )))] ,

L∗ = argmin
f

[log (1− D(f (X )))] .

And, finally, server recovers features with:

X̃ ∗ = ψ∗
D (L∗(X )) .



Baselines

Hijacking attack (FSHA)
Slightly different assumptions, the attacker has an access to some public
part of the dataset.
We have client-side model f : X → Z.
Server initializes three additional models: encoder ψE : X → Z̃ ⊂ Z,
decoder ψD : Z̃ → X , and discriminator D.

ψ∗
E, ψ

∗
D = arg min

ψE,ψD

LMSE (ψD(ψE(Xpub)), Xpub) ,

D = argmin
D

[log(1− D(ψE(Xpub))) + log(D(f (X )))] ,

L∗ = argmin
f

[log (1− D(f (X )))] .

And, finally, server recovers features with:

X̃ ∗ = ψ∗
D (L∗(X )) .



Observations 1



Observations 2

Both of these attacks are validated exclusively on image datasets,
utilizing CNN architectures

Hard to analyze their performance in theory

???

Does architectural design play a crucial role in the effectiveness of the
latter attacks?

Is it that simple to attack features, or does the data prior knowledge
give a lot?

Can we develop a theoretical intuition that MLP-based models might
be more privacy-preserving againts Feature Reconstruction attacks?



Observations 2

Both of these attacks are validated exclusively on image datasets,
utilizing CNN architectures

Hard to analyze their performance in theory

???

Does architectural design play a crucial role in the effectiveness of the
latter attacks?

Is it that simple to attack features, or does the data prior knowledge
give a lot?

Can we develop a theoretical intuition that MLP-based models might
be more privacy-preserving againts Feature Reconstruction attacks?



Observations 2

Both of these attacks are validated exclusively on image datasets,
utilizing CNN architectures

Hard to analyze their performance in theory

???

Does architectural design play a crucial role in the effectiveness of the
latter attacks?

Is it that simple to attack features, or does the data prior knowledge
give a lot?

Can we develop a theoretical intuition that MLP-based models might
be more privacy-preserving againts Feature Reconstruction attacks?



Observations 2

Both of these attacks are validated exclusively on image datasets,
utilizing CNN architectures

Hard to analyze their performance in theory

???

Does architectural design play a crucial role in the effectiveness of the
latter attacks?

Is it that simple to attack features, or does the data prior knowledge
give a lot?

Can we develop a theoretical intuition that MLP-based models might
be more privacy-preserving againts Feature Reconstruction attacks?



Observations 2

Both of these attacks are validated exclusively on image datasets,
utilizing CNN architectures

Hard to analyze their performance in theory

???

Does architectural design play a crucial role in the effectiveness of the
latter attacks?

Is it that simple to attack features, or does the data prior knowledge
give a lot?

Can we develop a theoretical intuition that MLP-based models might
be more privacy-preserving againts Feature Reconstruction attacks?



Observations 2

Both of these attacks are validated exclusively on image datasets,
utilizing CNN architectures

Hard to analyze their performance in theory

???

Does architectural design play a crucial role in the effectiveness of the
latter attacks?

Is it that simple to attack features, or does the data prior knowledge
give a lot?

Can we develop a theoretical intuition that MLP-based models might
be more privacy-preserving againts Feature Reconstruction attacks?



Observations 2

Both of these attacks are validated exclusively on image datasets,
utilizing CNN architectures

Hard to analyze their performance in theory

???

Does architectural design play a crucial role in the effectiveness of the
latter attacks?

Is it that simple to attack features, or does the data prior knowledge
give a lot?

Can we develop a theoretical intuition that MLP-based models might
be more privacy-preserving againts Feature Reconstruction attacks?



Observations 3: Theoretical Motivation

Let us consider a client f as one-layer linear model f = XW with
W ∈ Rd×dh

Introduce a pairs {X ,W } → {X̃ , W̃ } = {XU,U⊤W }, where U is an
arbitrary (semi)orthogonal matrix (transformations)

Assume training with (S)GD for k iterations

1. Base case, k = 1: H1 = X1W1 = X1UU
⊤W1 = X̃1W̃1 = H̃1

2. Induction step, k+ 1 > 1: Let Hk = H̃k by induction hypothesis.
Then ∂L/∂Hk = ∂L/∂H̃k = Gk ∈ Rn×dh . Recall, that

∂L
∂Wk

=
∂L
∂Hk

∂Hk

∂Wk
= X⊤

k

∂L
∂Hk

= X⊤
k Gk.



Observations 3: Theoretical Motivation

Let us consider a client f as one-layer linear model f = XW with
W ∈ Rd×dh

Introduce a pairs {X ,W } → {X̃ , W̃ } = {XU,U⊤W }, where U is an
arbitrary (semi)orthogonal matrix (transformations)

Assume training with (S)GD for k iterations

1. Base case, k = 1: H1 = X1W1 = X1UU
⊤W1 = X̃1W̃1 = H̃1

2. Induction step, k+ 1 > 1: Let Hk = H̃k by induction hypothesis.
Then ∂L/∂Hk = ∂L/∂H̃k = Gk ∈ Rn×dh . Recall, that

∂L
∂Wk

=
∂L
∂Hk

∂Hk

∂Wk
= X⊤

k

∂L
∂Hk

= X⊤
k Gk.



Observations 3: Theoretical Motivation

Let us consider a client f as one-layer linear model f = XW with
W ∈ Rd×dh

Introduce a pairs {X ,W } → {X̃ , W̃ } = {XU,U⊤W }, where U is an
arbitrary (semi)orthogonal matrix (transformations)

Assume training with (S)GD for k iterations

1. Base case, k = 1: H1 = X1W1 = X1UU
⊤W1 = X̃1W̃1 = H̃1

2. Induction step, k+ 1 > 1: Let Hk = H̃k by induction hypothesis.
Then ∂L/∂Hk = ∂L/∂H̃k = Gk ∈ Rn×dh . Recall, that

∂L
∂Wk

=
∂L
∂Hk

∂Hk

∂Wk
= X⊤

k

∂L
∂Hk

= X⊤
k Gk.



Observations 3: Theoretical Motivation

Let us consider a client f as one-layer linear model f = XW with
W ∈ Rd×dh

Introduce a pairs {X ,W } → {X̃ , W̃ } = {XU,U⊤W }, where U is an
arbitrary (semi)orthogonal matrix (transformations)

Assume training with (S)GD for k iterations

1. Base case, k = 1: H1 = X1W1 = X1UU
⊤W1 = X̃1W̃1 = H̃1

2. Induction step, k+ 1 > 1: Let Hk = H̃k by induction hypothesis.
Then ∂L/∂Hk = ∂L/∂H̃k = Gk ∈ Rn×dh . Recall, that

∂L
∂Wk

=
∂L
∂Hk

∂Hk

∂Wk
= X⊤

k

∂L
∂Hk

= X⊤
k Gk.



Observations 3: Theoretical Motivation

Let us consider a client f as one-layer linear model f = XW with
W ∈ Rd×dh

Introduce a pairs {X ,W } → {X̃ , W̃ } = {XU,U⊤W }, where U is an
arbitrary (semi)orthogonal matrix (transformations)

Assume training with (S)GD for k iterations

1. Base case, k = 1: H1 = X1W1 = X1UU
⊤W1 = X̃1W̃1 = H̃1

2. Induction step, k+ 1 > 1: Let Hk = H̃k by induction hypothesis.
Then ∂L/∂Hk = ∂L/∂H̃k = Gk ∈ Rn×dh . Recall, that

∂L
∂Wk

=
∂L
∂Hk

∂Hk

∂Wk
= X⊤

k

∂L
∂Hk

= X⊤
k Gk.



Observations 3: Theoretical Motivation

Let us consider a client f as one-layer linear model f = XW with
W ∈ Rd×dh

Introduce a pairs {X ,W } → {X̃ , W̃ } = {XU,U⊤W }, where U is an
arbitrary (semi)orthogonal matrix (transformations)

Assume training with (S)GD for k iterations

1. Base case, k = 1: H1 = X1W1 = X1UU
⊤W1 = X̃1W̃1 = H̃1

2. Induction step, k+ 1 > 1: Let Hk = H̃k by induction hypothesis.
Then ∂L/∂Hk = ∂L/∂H̃k = Gk ∈ Rn×dh . Recall, that

∂L
∂Wk

=
∂L
∂Hk

∂Hk

∂Wk
= X⊤

k

∂L
∂Hk

= X⊤
k Gk.



Observations 3: Theoretical Motivation

Then the step of GD for the pairs {X ,W1} and {X̃ , W̃1} returns

Wk+1 = Wk − γX⊤
k Gk

and
W̃k+1 = W̃k − γX̃⊤

k Gk = U⊤Wk − γU⊤X⊤
k Gk

respectively.
Thus, at k+ 1 step

Hk+1 = Xk+1Wk+1 = Xk+1Wk − γXk+1X
⊤
k Gk =

= Xk+1UU
⊤Wk − γXk+1UU

⊤X⊤
k Gk =

= X̃k+1W̃k − γX̃k+1X̃
⊤
k Gk =

= X̃k+1W̃k+1 = H̃k+1,

i.e., the activations sent to the server are identical for {X ,W1}, {X̃ , W̃1}
pairs.



Observations 3: Theoretical Motivation

Lemma 1

For a one-layer linear model trained using GD or SGD, there exist
continually many pairs of client data and weights initialization that
produce the same activations at each step.

Remark 1

Under the conditions of Lemma 1, if the server has no prior information
about the distribution of X , the label party cannot reconstruct initial data
X (only up to an arbitrary orthogonal transformation).

What about the Malicious server???



Observations 3: Theoretical Motivation

Lemma 1

For a one-layer linear model trained using GD or SGD, there exist
continually many pairs of client data and weights initialization that
produce the same activations at each step.

Remark 1

Under the conditions of Lemma 1, if the server has no prior information
about the distribution of X , the label party cannot reconstruct initial data
X (only up to an arbitrary orthogonal transformation).

What about the Malicious server???



Observations 3: Theoretical Motivation

Lemma 1

For a one-layer linear model trained using GD or SGD, there exist
continually many pairs of client data and weights initialization that
produce the same activations at each step.

Remark 1

Under the conditions of Lemma 1, if the server has no prior information
about the distribution of X , the label party cannot reconstruct initial data
X (only up to an arbitrary orthogonal transformation).

What about the Malicious server???



Observations 4: Theoretical Motivation

Corollary 1

Under the conditions of Lemma1, assume that server knows the first layer
W1 of f , and let this layer be an invertible matrix. Then, the label party
cannot reconstruct the initial data X (only up to an arbitrary orthogonal
transformation).

Client transmits Hk+1 = XWk+1

Wk+1 = Wk − γX⊤G fake
k =

=
(
Wk−1 − γX⊤G fake

k−1

)
− γX⊤G fake

k =

= · · · = W1 − γX⊤

[
k∑

i=1

G fake
i

]
.



Observations 4: Theoretical Motivation

Corollary 1

Under the conditions of Lemma1, assume that server knows the first layer
W1 of f , and let this layer be an invertible matrix. Then, the label party
cannot reconstruct the initial data X (only up to an arbitrary orthogonal
transformation).

Client transmits Hk+1 = XWk+1

Wk+1 = Wk − γX⊤G fake
k =

=
(
Wk−1 − γX⊤G fake

k−1

)
− γX⊤G fake

k =

= · · · = W1 − γX⊤

[
k∑

i=1

G fake
i

]
.



Observations 4: Theoretical Motivation

Corollary 1

Under the conditions of Lemma1, assume that server knows the first layer
W1 of f , and let this layer be an invertible matrix. Then, the label party
cannot reconstruct the initial data X (only up to an arbitrary orthogonal
transformation).

Client transmits Hk+1 = XWk+1

Wk+1 = Wk − γX⊤G fake
k =

=
(
Wk−1 − γX⊤G fake

k−1

)
− γX⊤G fake

k =

= · · · = W1 − γX⊤

[
k∑

i=1

G fake
i

]
.



Observations 4: Theoretical Motivation

Hk+1 = XWk+1 = XW1 − γXX⊤

[
k∑

i=1

G fake
i

]
,

H̃k+1 = X̃W1 − γX̃ X̃⊤

[
k∑

i=1

G fake
i

]
= X̃W1 − γXX⊤

[
k∑

i=1

G fake
i

]
.

The server can only build its attack based on the knowledge of X̃ = XU
and X̃ X̃⊤.
This means that it cannot distinguish between two different pairs {X ,U}
if they generate the same values X̃ and X̃ X̃⊤.



Observations 4: Theoretical Motivation

Hk+1 = XWk+1 = XW1 − γXX⊤

[
k∑

i=1

G fake
i

]
,

H̃k+1 = X̃W1 − γX̃ X̃⊤

[
k∑

i=1

G fake
i

]
= X̃W1 − γXX⊤

[
k∑

i=1

G fake
i

]
.

The server can only build its attack based on the knowledge of X̃ = XU
and X̃ X̃⊤.
This means that it cannot distinguish between two different pairs {X ,U}
if they generate the same values X̃ and X̃ X̃⊤.



Observations 4: Theoretical Motivation

Hk+1 = XWk+1 = XW1 − γXX⊤

[
k∑

i=1

G fake
i

]
,

H̃k+1 = X̃W1 − γX̃ X̃⊤

[
k∑

i=1

G fake
i

]
= X̃W1 − γXX⊤

[
k∑

i=1

G fake
i

]
.

The server can only build its attack based on the knowledge of X̃ = XU
and X̃ X̃⊤.
This means that it cannot distinguish between two different pairs {X ,U}
if they generate the same values X̃ and X̃ X̃⊤.



Observations 4: Theoretical Motivation

Lemma 2

Under the conditions of Lemma 1, assume training with the malicious
server sending arbitrary vectors instead of real gradients G = ∂f /∂H. In
addition, the server knows the initialization of the weight matrix W1.
Then, if the client applies a non-trainable orthogonal matrix before W1,
the malicious server cannot reconstruct initial data X (only up to an
arbitrary orthogonal transformation).

Remark 2

With the same reasons as for Lemma 1, if even the malicious server from
Lemma 2 has no prior information about the distribution of X , it is
impossible for the label party to reconstruct the initial data X .



Observations 4: Theoretical Motivation

Lemma 2

Under the conditions of Lemma 1, assume training with the malicious
server sending arbitrary vectors instead of real gradients G = ∂f /∂H. In
addition, the server knows the initialization of the weight matrix W1.
Then, if the client applies a non-trainable orthogonal matrix before W1,
the malicious server cannot reconstruct initial data X (only up to an
arbitrary orthogonal transformation).

Remark 2

With the same reasons as for Lemma 1, if even the malicious server from
Lemma 2 has no prior information about the distribution of X , it is
impossible for the label party to reconstruct the initial data X .



Cut Layer

Up until now, we considered the client-side model with one linear layer W
and proved that orthogonal transformation of data X and weights W lead
to the same training protocol

The intuition behind Lemmas 1 and 2 suggests that in the client model,
one should look for layers whose inputs cannot be given the prior
distribution.

What about Cut Layer?



Cut Layer

Up until now, we considered the client-side model with one linear layer W
and proved that orthogonal transformation of data X and weights W lead
to the same training protocol

The intuition behind Lemmas 1 and 2 suggests that in the client model,
one should look for layers whose inputs cannot be given the prior
distribution.

What about Cut Layer?



Cut Layer

Cut Layer Lemma

There exist continually many distributions of the activations before the
linear Cut Layer that produce the same Split Learning protocol.

H = ZW , Z → Z̃ = ZU and W1 → W̃1 = U⊤W1.

Let us define the client’s ”previous” parameters (before W ) as θ and
function of this parameters as fθ : fθ(θ,X ) = Z .

Then

f (X , θ,W ) = H = fθ(θ,X )W = ZW , L = L(H) = L(ZW ).



Cut Layer

Cut Layer Lemma

There exist continually many distributions of the activations before the
linear Cut Layer that produce the same Split Learning protocol.

H = ZW , Z → Z̃ = ZU and W1 → W̃1 = U⊤W1.

Let us define the client’s ”previous” parameters (before W ) as θ and
function of this parameters as fθ : fθ(θ,X ) = Z .

Then

f (X , θ,W ) = H = fθ(θ,X )W = ZW , L = L(H) = L(ZW ).



Cut Layer

Cut Layer Lemma

There exist continually many distributions of the activations before the
linear Cut Layer that produce the same Split Learning protocol.

H = ZW , Z → Z̃ = ZU and W1 → W̃1 = U⊤W1.

Let us define the client’s ”previous” parameters (before W ) as θ and
function of this parameters as fθ : fθ(θ,X ) = Z .

Then

f (X , θ,W ) = H = fθ(θ,X )W = ZW , L = L(H) = L(ZW ).



Cut Layer

Cut Layer Lemma

There exist continually many distributions of the activations before the
linear Cut Layer that produce the same Split Learning protocol.

H = ZW , Z → Z̃ = ZU and W1 → W̃1 = U⊤W1.

Let us define the client’s ”previous” parameters (before W ) as θ and
function of this parameters as fθ : fθ(θ,X ) = Z .

Then

f (X , θ,W ) = H = fθ(θ,X )W = ZW , L = L(H) = L(ZW ).



Cut Layer

Let us consider the gradient of loss L w.r.t. W and θ:

∂L
∂W

=
∂L
∂H

∂H

∂W
= Z⊤ ∂L

∂H
,

∂L
∂θ

=
∂L
∂H

∂H

∂Z

∂Z

∂θ
=

[
∂Z

∂θ

]∗ ∂L
∂H

W⊤ = J∗
∂L
∂H

W⊤,

where J = ∂Z
∂θ – Jacobian of fθ.

Thus, after the first two iterations we conclude:

H1 = Z1W1, θ2 = θ1 − γJ∗1
∂L
∂H1

W⊤
1 , W2 = W1 − γZ⊤

1

∂L
∂H1

,

and

H2 = Z2W2 = fθ(θ2,X )W2 = fθ(θ2,X )W1 − γfθ(θ2,X )Z⊤
1

∂L
∂H1

.



Cut Layer

Let us consider the gradient of loss L w.r.t. W and θ:

∂L
∂W

=
∂L
∂H

∂H

∂W
= Z⊤ ∂L

∂H
,

∂L
∂θ

=
∂L
∂H

∂H

∂Z

∂Z

∂θ
=

[
∂Z

∂θ

]∗ ∂L
∂H

W⊤ = J∗
∂L
∂H

W⊤,

where J = ∂Z
∂θ – Jacobian of fθ.

Thus, after the first two iterations we conclude:

H1 = Z1W1, θ2 = θ1 − γJ∗1
∂L
∂H1

W⊤
1 , W2 = W1 − γZ⊤

1

∂L
∂H1

,

and

H2 = Z2W2 = fθ(θ2,X )W2 = fθ(θ2,X )W1 − γfθ(θ2,X )Z⊤
1

∂L
∂H1

.



Cut Layer

Adding the additional orthogonal matrix U results in:

W̃1 = U⊤W1, H̃1 = Z̃1W̃1 = (Z1U)W̃1 = H1, W̃2 = W̃1 − γZ̃⊤
1

∂L
∂H1

∂L̃
∂θ1

=
∂L̃
∂H1

∂H1

∂Z̃1

∂Z̃1

∂Z1

∂Z1

∂θ
= J∗1

∂L
∂H1

W̃⊤
1 U⊤ = J∗1

∂L
∂H1

(U⊤W1)
⊤U⊤

= J∗1
∂L
∂H1

W⊤
1 =

∂L
∂θ1

.

Then, for the activations obtained with and without U we claim:

H̃2 = Z̃2W̃2 = f (θ2,X )UW̃2

= f (θ2,X )UW̃1 − γf (θ2,X )UZ̃⊤
1

∂L
∂H1

= H2.



Cut Layer

Adding the additional orthogonal matrix U results in:

W̃1 = U⊤W1, H̃1 = Z̃1W̃1 = (Z1U)W̃1 = H1, W̃2 = W̃1 − γZ̃⊤
1

∂L
∂H1

∂L̃
∂θ1

=
∂L̃
∂H1

∂H1

∂Z̃1

∂Z̃1

∂Z1

∂Z1

∂θ
= J∗1

∂L
∂H1

W̃⊤
1 U⊤ = J∗1

∂L
∂H1

(U⊤W1)
⊤U⊤

= J∗1
∂L
∂H1

W⊤
1 =

∂L
∂θ1

.

Then, for the activations obtained with and without U we claim:

H̃2 = Z̃2W̃2 = f (θ2,X )UW̃2

= f (θ2,X )UW̃1 − γf (θ2,X )UZ̃⊤
1

∂L
∂H1

= H2.



Cut Layer

Adding the additional orthogonal matrix U results in:

W̃1 = U⊤W1, H̃1 = Z̃1W̃1 = (Z1U)W̃1 = H1, W̃2 = W̃1 − γZ̃⊤
1

∂L
∂H1

∂L̃
∂θ1

=
∂L̃
∂H1

∂H1

∂Z̃1

∂Z̃1

∂Z1

∂Z1

∂θ
= J∗1

∂L
∂H1

W̃⊤
1 U⊤ = J∗1

∂L
∂H1

(U⊤W1)
⊤U⊤

= J∗1
∂L
∂H1

W⊤
1 =

∂L
∂θ1

.

Then, for the activations obtained with and without U we claim:

H̃2 = Z̃2W̃2 = f (θ2,X )UW̃2

= f (θ2,X )UW̃1 − γf (θ2,X )UZ̃⊤
1

∂L
∂H1

= H2.



Hypothesis

Hypothesis 1

Could it be that the attacks are successful due to the lack of dense layers
in the client architecture? Will usage of MLP-based architectures for f ,
instead of CNNs, be more privacy preserving against Model Inversion
attack and FSHA?



Experiments

Figure: Results of UnSplit attack on CIFAR-10. (Top): Original images.
(Middle): CNN-based client model. (Bottom): MLP-Mixer client model.



Experiments

Figure: Results of UnSplit attack on
MNIST. (Top): Original images.
(Middle): CNN-based client model.
(Bottom): MLP-based client model.

Figure: Results of UnSplit attack on
F-MNIST. (Top): Original images.
(Middle): CNN-based client model.
(Bottom): MLP-based client model.



Experiments

Figure: Results of FSHA attack on
MNIST. (Top): Original images.
(Middle): CNN-based client model.
(Bottom): MLP-based client model.

Figure: Results of FSHA attack on
F-MNIST. (Top): Original images.
(Middle): CNN-based client model.
(Bottom): MLP-based client model.



Experiments

0 500 1000 1500 2000 2500 3000
Iteration

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
SE

Encoder-decoder error
CNN-based
MLP-based

0 500 1000 1500 2000 2500 3000
Iteration

0.0

0.2

0.4

0.6

0.8

M
SE

Reconstruction error
CNN-based
MLP-based

0 1000 2000 3000 4000 5000
Iteration

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

M
SE

Encoder-decoder error
CNN-based
MLP-based

0 1000 2000 3000 4000 5000
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
SE

Reconstruction error

CNN-based
MLP-based

FSHA MNIST

FSHA F-MNIST



Split Learning with Adam

Previous theory works only for (S)GD-like methods. In
practice, all experiments are correct with Adam also

What about Adam in theory?
In Adam, the bias-corrected first and second moment estimates, i.e. mk

and D̂k are:mk = 1−β1
1−βk

1

∑k
i=1 β

k−i
1 ∇L(Wi),

D̂2
k = 1−β2

1−βk
2

∑k
i=1 β

k−i
2 diag (∇L(Wi)⊙∇L(Wi)) ,

with the following update rule (without bias-correctness):
m̂k+1 = β1m̂k + (1− β1)∇L(Wk),

D̂2
k+1 = β2D̂

2
k + (1− β2) diag(∇L(Wk)⊙∇L(Wk)).



Split Learning with Adam

Previous theory works only for (S)GD-like methods. In
practice, all experiments are correct with Adam also

What about Adam in theory?

In Adam, the bias-corrected first and second moment estimates, i.e. mk

and D̂k are:mk = 1−β1
1−βk

1

∑k
i=1 β

k−i
1 ∇L(Wi),

D̂2
k = 1−β2

1−βk
2

∑k
i=1 β

k−i
2 diag (∇L(Wi)⊙∇L(Wi)) ,

with the following update rule (without bias-correctness):
m̂k+1 = β1m̂k + (1− β1)∇L(Wk),

D̂2
k+1 = β2D̂

2
k + (1− β2) diag(∇L(Wk)⊙∇L(Wk)).



Split Learning with Adam

Previous theory works only for (S)GD-like methods. In
practice, all experiments are correct with Adam also

What about Adam in theory?
In Adam, the bias-corrected first and second moment estimates, i.e. mk

and D̂k are:mk = 1−β1
1−βk

1

∑k
i=1 β

k−i
1 ∇L(Wi),

D̂2
k = 1−β2

1−βk
2

∑k
i=1 β

k−i
2 diag (∇L(Wi)⊙∇L(Wi)) ,

with the following update rule (without bias-correctness):
m̂k+1 = β1m̂k + (1− β1)∇L(Wk),

D̂2
k+1 = β2D̂

2
k + (1− β2) diag(∇L(Wk)⊙∇L(Wk)).



Split Learning with Adam

Previous theory works only for (S)GD-like methods. In
practice, all experiments are correct with Adam also

What about Adam in theory?
In Adam, the bias-corrected first and second moment estimates, i.e. mk

and D̂k are:mk = 1−β1
1−βk

1

∑k
i=1 β

k−i
1 ∇L(Wi),

D̂2
k = 1−β2

1−βk
2

∑k
i=1 β

k−i
2 diag (∇L(Wi)⊙∇L(Wi)) ,

with the following update rule (without bias-correctness):
m̂k+1 = β1m̂k + (1− β1)∇L(Wk),

D̂2
k+1 = β2D̂

2
k + (1− β2) diag(∇L(Wk)⊙∇L(Wk)).



Split Learning with Adam

Remark Adam

Let {X̃ , W̃ } = {XU,U⊤W } pairs are an orthogonal(semi-orthogonal)
transformations of data and weights. Then, these pairs, in general, do not
produce the same activations at each step of the Split Learning process
with Adam.

Indeed,

ˆ̃D2
k − β2D̂

2
k−1 = (1− β2) diag

(
∂L
∂W̃k

⊙ ∂L
∂W̃k

)



Split Learning with Adam

Remark Adam

Let {X̃ , W̃ } = {XU,U⊤W } pairs are an orthogonal(semi-orthogonal)
transformations of data and weights. Then, these pairs, in general, do not
produce the same activations at each step of the Split Learning process
with Adam.

Indeed,

ˆ̃D2
k − β2D̂

2
k−1 = (1− β2) diag

(
∂L
∂W̃k

⊙ ∂L
∂W̃k

)



Split Learning with Adam

ˆ̃D2
k − β2D̂

2
k−1 = (1− β2) diag

(
∂L
∂H̃k

∂H̃k

∂W̃k

⊙ ∂L
∂H̃k

∂H̃k

∂W̃k

)

= (1− β2) diag

(
X̃⊤ ∂L

∂H̃k

⊙ X̃⊤ ∂L
∂H̃k

)
(H̃k=Hk)

= (1− β2) diag

(
X̃⊤ ∂L

∂Hk
⊙ X̃⊤ ∂L

∂Hk

)
= (1− β2) diag

(
U⊤X⊤ ∂L

∂Hk
⊙ U⊤X⊤ ∂L

∂Hk

)
,



Split Learning with Adam

the similar holds for ˆ̃mk

ˆ̃mk − β1m̂k−1 = (1− β1)
∂L
∂W̃k

= (1− β1)
∂L
∂H̃k

∂H̃k

∂W̃k

= (1− β1)X̃
⊤ ∂L
∂H̃k

(H̃k=Hk)
= (1− β1)X̃

⊤ ∂L
∂Hk

= (1− β1)U
⊤X⊤ ∂L

∂Hk
.



Split Learning with Adam

Then, it is clear how to compare the activations at k+ 1-th step
H̃k+1 = X̃ W̃k+1 = XWk − γXU ˆ̃D−1

k
ˆ̃mk,

Hk+1 = XWk+1 = XWk − γXD̂−1
k m̂k.

Therefore, a descrepancy between H̃k+1 and Hk+1 vanishes when

U ˆ̃D−1
k

ˆ̃mk = D̂−1
k m̂k.



Split Learning with Adam

Then, it is clear how to compare the activations at k+ 1-th step
H̃k+1 = X̃ W̃k+1 = XWk − γXU ˆ̃D−1

k
ˆ̃mk,

Hk+1 = XWk+1 = XWk − γXD̂−1
k m̂k.

Therefore, a descrepancy between H̃k+1 and Hk+1 vanishes when

U ˆ̃D−1
k

ˆ̃mk = D̂−1
k m̂k.



Split Learning with Adam

As usual, Adam may not converge on general
non-convex functions after the roation of data and

weights



Split Learning with Adam

As usual, Adam may not converge on general
non-convex functions after the roation of data and

weights



Split Learning with Adam

Example Indeed, let the initial weight and data vectors
equal:

w =
(
1.915 +

√
2 · 0.6, 0

)⊤
,

y = (1, 0)⊤ .

We rotate these arguments by an angle of π
4 with:

R =
1√
2

[
1 −1
1 1

]
.

In addition we pick the learning rate γ = 0.6. After that,
the optimization algorithm stack in the local minima if
starting from (Rw , Ry) point.



Split Learning with Adam



Split Learning with Adam

But, Adam will converge to the same optimal value on
PL-functions

Remark

The model’s optimal value L∗ after Split Learning is the same for any
orthogonal data transformation. Indeed,
∀X̃ = XU ∃W̃ ∗ = U⊤W ∗ : L(X̃ , W̃ ∗) = L∗ = L(X ,W ∗).

In addition, Split Learning protocol is preserved for PL functions with
orthogonal transformations of data and weights



Split Learning with Adam

But, Adam will converge to the same optimal value on
PL-functions

Remark

The model’s optimal value L∗ after Split Learning is the same for any
orthogonal data transformation. Indeed,
∀X̃ = XU ∃W̃ ∗ = U⊤W ∗ : L(X̃ , W̃ ∗) = L∗ = L(X ,W ∗).

In addition, Split Learning protocol is preserved for PL functions with
orthogonal transformations of data and weights



Split Learning with Adam

But, Adam will converge to the same optimal value on
PL-functions

Remark

The model’s optimal value L∗ after Split Learning is the same for any
orthogonal data transformation. Indeed,
∀X̃ = XU ∃W̃ ∗ = U⊤W ∗ : L(X̃ , W̃ ∗) = L∗ = L(X ,W ∗).

In addition, Split Learning protocol is preserved for PL functions with
orthogonal transformations of data and weights



Split Learning with Adam

Descent Lemma

Suppose the L-smooth Assumption holds for function L. Then we have for
all k ≥ 0 and γ, it is true for Adam that

L(Wk+1) ≤ L(Wk) +
γ

2α
∥∇L(Wk)−mk∥2 −

(
1

2γ
− L

2α

)
∥Wk+1

−Wk∥2D̂k
− γ

2
∥∇L(Wk)∥2D̂−1

k

.

Without proof here:)



Split Learning with Adam

Descent Lemma

Suppose the L-smooth Assumption holds for function L. Then we have for
all k ≥ 0 and γ, it is true for Adam that

L(Wk+1) ≤ L(Wk) +
γ

2α
∥∇L(Wk)−mk∥2 −

(
1

2γ
− L

2α

)
∥Wk+1

−Wk∥2D̂k
− γ

2
∥∇L(Wk)∥2D̂−1

k

.

Without proof here:)



The End

Thanks!


