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Baselines

UnSplit

Given a client model f , its clone f̃ (i.e., the randomly initialized model
with the same architecture), the adversary server attempts to solve the
two-step optimization problem:

X̃ ∗ = argmin
X̃

LMSE

(
f̃ (X̃ , W̃ ), f (X ,W )

)
+ λTV(X̃ ),

W̃ ∗ = argmin
W̃

LMSE

(
f̃ (X̃ , W̃ ), f (X ,W )

)
.

X , W are the client model’s private inputs and parameters; TV is the
total variation distance for image pixels; X̃ ∗, W̃ ∗ are the desired variables
for the attacker’s reconstructed output and parameters
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Hijacking attack (FSHA)

Slightly different assumptions, the attacker has an access to some public
part of the dataset.
We have client-side model f : X → Z.
Server initializes three additional models: encoder ψE : X → Z̃ ⊂ Z,
decoder ψD : Z̃ → X , and discriminator D.

ψ∗
E, ψ

∗
D = arg min

ψE,ψD

LMSE (ψD(ψE(Xpub)), Xpub) ,

D = argmin
D

[log(1− D(ψE(Xpub))) + log(D(f (X )))] ,

L∗ = argmin
f

[log (1− D(f (X )))] .

And, finally, server recovers features with:

X̃ ∗ = ψ∗
D (L∗(X )) .
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Both of these attacks are validated exclusively on image datasets,
utilizing CNN architectures

Hard to analyze their performance in theory

???

Does architectural design play a crucial role in the effectiveness of the
latter attacks?

Is it that simple to attack features, or does the data prior knowledge
give a lot?

Can we develop a theoretical intuition that MLP-based models might
be more privacy-preserving againts Feature Reconstruction attacks?
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Observations 3: Theoretical Motivation

Let us consider a client f as one-layer linear model f = XW with
W ∈ Rd×dh

Introduce a pairs {X ,W } → {X̃ , W̃ } = {XU,U⊤W }, where U is an
arbitrary (semi)orthogonal matrix (transformations)

Assume training with (S)GD for k iterations

1. Base case, k = 1: H1 = X1W1 = X1UU
⊤W1 = X̃1W̃1 = H̃1

2. Induction step, k+ 1 > 1: Let Hk = H̃k by induction hypothesis.
Then ∂L/∂Hk = ∂L/∂H̃k = Gk ∈ Rn×dh . Recall, that

∂L
∂Wk

=
∂L
∂Hk

∂Hk

∂Wk
= X⊤

k

∂L
∂Hk

= X⊤
k Gk.
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Then the step of GD for the pairs {X ,W1} and {X̃ , W̃1} returns

Wk+1 = Wk − γX⊤
k Gk

and
W̃k+1 = W̃k − γX̃⊤

k Gk = U⊤Wk − γU⊤X⊤
k Gk

respectively.
Thus, at k+ 1 step

Hk+1 = Xk+1Wk+1 = Xk+1Wk − γXk+1X
⊤
k Gk =

= Xk+1UU
⊤Wk − γXk+1UU

⊤X⊤
k Gk =

= X̃k+1W̃k − γX̃k+1X̃
⊤
k Gk =

= X̃k+1W̃k+1 = H̃k+1,

i.e., the activations sent to the server are identical for {X ,W1}, {X̃ , W̃1}
pairs.



Observations 3: Theoretical Motivation

Lemma 1

For a one-layer linear model trained using GD or SGD, there exist
continually many pairs of client data and weights initialization that
produce the same activations at each step.

Remark 1

Under the conditions of Lemma 1, if the server has no prior information
about the distribution of X , the label party cannot reconstruct initial data
X (only up to an arbitrary orthogonal transformation).

What about the Malicious server???
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Observations 4: Theoretical Motivation

Corollary 1

Under the conditions of Lemma1, assume that server knows the first layer
W1 of f , and let this layer be an invertible matrix. Then, the label party
cannot reconstruct the initial data X (only up to an arbitrary orthogonal
transformation).

Client transmits Hk+1 = XWk+1

Wk+1 = Wk − γX⊤G fake
k =

=
(
Wk−1 − γX⊤G fake

k−1

)
− γX⊤G fake

k =

= · · · = W1 − γX⊤

[
k∑

i=1

G fake
i

]
.
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Hk+1 = XWk+1 = XW1 − γXX⊤

[
k∑

i=1

G fake
i

]
,

H̃k+1 = X̃W1 − γX̃ X̃⊤

[
k∑

i=1

G fake
i

]
= X̃W1 − γXX⊤

[
k∑

i=1

G fake
i

]
.

The server can only build its attack based on the knowledge of X̃ = XU
and X̃ X̃⊤.
This means that it cannot distinguish between two different pairs {X ,U}
if they generate the same values X̃ and X̃ X̃⊤.



Observations 4: Theoretical Motivation

Hk+1 = XWk+1 = XW1 − γXX⊤

[
k∑

i=1

G fake
i

]
,

H̃k+1 = X̃W1 − γX̃ X̃⊤

[
k∑

i=1

G fake
i

]
= X̃W1 − γXX⊤

[
k∑

i=1

G fake
i

]
.

The server can only build its attack based on the knowledge of X̃ = XU
and X̃ X̃⊤.
This means that it cannot distinguish between two different pairs {X ,U}
if they generate the same values X̃ and X̃ X̃⊤.



Observations 4: Theoretical Motivation

Hk+1 = XWk+1 = XW1 − γXX⊤

[
k∑

i=1

G fake
i

]
,

H̃k+1 = X̃W1 − γX̃ X̃⊤

[
k∑

i=1

G fake
i

]
= X̃W1 − γXX⊤

[
k∑

i=1

G fake
i

]
.

The server can only build its attack based on the knowledge of X̃ = XU
and X̃ X̃⊤.
This means that it cannot distinguish between two different pairs {X ,U}
if they generate the same values X̃ and X̃ X̃⊤.



Observations 4: Theoretical Motivation

Lemma 2

Under the conditions of Lemma 1, assume training with the malicious
server sending arbitrary vectors instead of real gradients G = ∂f /∂H. In
addition, the server knows the initialization of the weight matrix W1.
Then, if the client applies a non-trainable orthogonal matrix before W1,
the malicious server cannot reconstruct initial data X (only up to an
arbitrary orthogonal transformation).

Remark 2

With the same reasons as for Lemma 1, if even the malicious server from
Lemma 2 has no prior information about the distribution of X , it is
impossible for the label party to reconstruct the initial data X .
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Cut Layer

Up until now, we considered the client-side model with one linear layer W
and proved that orthogonal transformation of data X and weights W lead
to the same training protocol

The intuition behind Lemmas 1 and 2 suggests that in the client model,
one should look for layers whose inputs cannot be given the prior
distribution.

What about Cut Layer?
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Cut Layer

Cut Layer Lemma

There exist continually many distributions of the activations before the
linear Cut Layer that produce the same Split Learning protocol.

H = ZW , Z → Z̃ = ZU and W1 → W̃1 = U⊤W1.

Let us define the client’s ”previous” parameters (before W ) as θ and
function of this parameters as fθ : fθ(θ,X ) = Z .

Then

f (X , θ,W ) = H = fθ(θ,X )W = ZW , L = L(H) = L(ZW ).
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f (X , θ,W ) = H = fθ(θ,X )W = ZW , L = L(H) = L(ZW ).
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Cut Layer

Let us consider the gradient of loss L w.r.t. W and θ:

∂L
∂W

=
∂L
∂H

∂H

∂W
= Z⊤ ∂L

∂H
,

∂L
∂θ

=
∂L
∂H

∂H

∂Z

∂Z

∂θ
=

[
∂Z

∂θ

]∗ ∂L
∂H

W⊤ = J∗
∂L
∂H

W⊤,

where J = ∂Z
∂θ – Jacobian of fθ.

Thus, after the first two iterations we conclude:

H1 = Z1W1, θ2 = θ1 − γJ∗1
∂L
∂H1

W⊤
1 , W2 = W1 − γZ⊤

1

∂L
∂H1

,

and

H2 = Z2W2 = fθ(θ2,X )W2 = fθ(θ2,X )W1 − γfθ(θ2,X )Z⊤
1

∂L
∂H1

.
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Cut Layer

Adding the additional orthogonal matrix U results in:

W̃1 = U⊤W1, H̃1 = Z̃1W̃1 = (Z1U)W̃1 = H1, W̃2 = W̃1 − γZ̃⊤
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∂H1
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∂L
∂θ1

.

Then, for the activations obtained with and without U we claim:

H̃2 = Z̃2W̃2 = f (θ2,X )UW̃2

= f (θ2,X )UW̃1 − γf (θ2,X )UZ̃⊤
1

∂L
∂H1

= H2.
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Hypothesis

Hypothesis 1

Could it be that the attacks are successful due to the lack of dense layers
in the client architecture? Will usage of MLP-based architectures for f ,
instead of CNNs, be more privacy preserving against Model Inversion
attack and FSHA?



Experiments

Figure: Results of UnSplit attack on CIFAR-10. (Top): Original images.
(Middle): CNN-based client model. (Bottom): MLP-Mixer client model.
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Figure: Results of UnSplit attack on
MNIST. (Top): Original images.
(Middle): CNN-based client model.
(Bottom): MLP-based client model.

Figure: Results of UnSplit attack on
F-MNIST. (Top): Original images.
(Middle): CNN-based client model.
(Bottom): MLP-based client model.



Experiments

Figure: Results of FSHA attack on
MNIST. (Top): Original images.
(Middle): CNN-based client model.
(Bottom): MLP-based client model.

Figure: Results of FSHA attack on
F-MNIST. (Top): Original images.
(Middle): CNN-based client model.
(Bottom): MLP-based client model.
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Split Learning with Adam

Previous theory works only for (S)GD-like methods. In
practice, all experiments are correct with Adam also

What about Adam in theory?
In Adam, the bias-corrected first and second moment estimates, i.e. mk

and D̂k are:mk = 1−β1
1−βk

1

∑k
i=1 β

k−i
1 ∇L(Wi),

D̂2
k = 1−β2

1−βk
2

∑k
i=1 β

k−i
2 diag (∇L(Wi)⊙∇L(Wi)) ,

with the following update rule (without bias-correctness):
m̂k+1 = β1m̂k + (1− β1)∇L(Wk),

D̂2
k+1 = β2D̂

2
k + (1− β2) diag(∇L(Wk)⊙∇L(Wk)).
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Split Learning with Adam

Remark Adam

Let {X̃ , W̃ } = {XU,U⊤W } pairs are an orthogonal(semi-orthogonal)
transformations of data and weights. Then, these pairs, in general, do not
produce the same activations at each step of the Split Learning process
with Adam.

Indeed,

ˆ̃D2
k − β2D̂

2
k−1 = (1− β2) diag

(
∂L
∂W̃k

⊙ ∂L
∂W̃k

)
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Split Learning with Adam

ˆ̃D2
k − β2D̂

2
k−1 = (1− β2) diag

(
∂L
∂H̃k

∂H̃k

∂W̃k

⊙ ∂L
∂H̃k

∂H̃k

∂W̃k

)

= (1− β2) diag

(
X̃⊤ ∂L

∂H̃k

⊙ X̃⊤ ∂L
∂H̃k

)
(H̃k=Hk)

= (1− β2) diag

(
X̃⊤ ∂L

∂Hk
⊙ X̃⊤ ∂L

∂Hk

)
= (1− β2) diag

(
U⊤X⊤ ∂L

∂Hk
⊙ U⊤X⊤ ∂L

∂Hk

)
,



Split Learning with Adam

the similar holds for ˆ̃mk

ˆ̃mk − β1m̂k−1 = (1− β1)
∂L
∂W̃k

= (1− β1)
∂L
∂H̃k

∂H̃k

∂W̃k

= (1− β1)X̃
⊤ ∂L
∂H̃k

(H̃k=Hk)
= (1− β1)X̃

⊤ ∂L
∂Hk

= (1− β1)U
⊤X⊤ ∂L

∂Hk
.



Split Learning with Adam

Then, it is clear how to compare the activations at k+ 1-th step
H̃k+1 = X̃ W̃k+1 = XWk − γXU ˆ̃D−1

k
ˆ̃mk,

Hk+1 = XWk+1 = XWk − γXD̂−1
k m̂k.

Therefore, a descrepancy between H̃k+1 and Hk+1 vanishes when

U ˆ̃D−1
k

ˆ̃mk = D̂−1
k m̂k.
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As usual, Adam may not converge on general
non-convex functions after the roation of data and

weights
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Split Learning with Adam

Example Indeed, let the initial weight and data vectors
equal:

w =
(
1.915 +

√
2 · 0.6, 0

)⊤
,

y = (1, 0)⊤ .

We rotate these arguments by an angle of π
4 with:

R =
1√
2

[
1 −1
1 1

]
.

In addition we pick the learning rate γ = 0.6. After that,
the optimization algorithm stack in the local minima if
starting from (Rw , Ry) point.
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But, Adam will converge to the same optimal value on
PL-functions

Remark

The model’s optimal value L∗ after Split Learning is the same for any
orthogonal data transformation. Indeed,
∀X̃ = XU ∃W̃ ∗ = U⊤W ∗ : L(X̃ , W̃ ∗) = L∗ = L(X ,W ∗).

In addition, Split Learning protocol is preserved for PL functions with
orthogonal transformations of data and weights
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Split Learning with Adam

Descent Lemma

Suppose the L-smooth Assumption holds for function L. Then we have for
all k ≥ 0 and γ, it is true for Adam that

L(Wk+1) ≤ L(Wk) +
γ

2α
∥∇L(Wk)−mk∥2 −

(
1

2γ
− L

2α

)
∥Wk+1

−Wk∥2D̂k
− γ

2
∥∇L(Wk)∥2D̂−1

k

.

Without proof here:)
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The End

Thanks!


